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Low-frequency excitations of a one-dimensional chain of oscillators propagate 
like waves with a uniform velocity. Therefore this lattice is Lorentz invariant on a 
macroscopic scale. The Dirac-Schwinger commutation relations are constructed 
explicitly and shown to have the correct limit for long wavelengths. A similar test 
could be used to check the Lorentz invariance of lattice field theories. 

It was shown long ago by Dirac (1962) and Schwinger (1962) that a 
simple criterion for Lorentz invariance in quantum field theory is the 
commutation relation 

[ ~ ( x ) ,  ~J(~(y)]/ih : - [@k(x) + Pk(Y)] OkS(x--Y) (1) 

relating the energy density to the momentum density. Recently, there has 
been considerable interest in field theories on a lattice (Wilson, 1974; Kogut 
and Susskind, 1975; Drell et al., 1976; 1977; 1978). It is generally believed 
that Lorentz invariance can be achieved in the limit where the lattice 
parameter tends to zero. However, this is a difficult limit to evaluate and 
formal proofs of this assertion are extremely intricate, even for the simplest 
model field theories (Glimm and Jaffe, 1973; Park, 1975; Feldman and 
Osterwalder, 1976; Magnen and Seneor, 1976; McCoy and Wu, 1978). The 
purpose of this note is to show how the Dirac-Schwinger criterion can be 
applied to a lattice. 

As an illustration, consider a one-dimensional lattice of nonrelativistic 
harmonic oscillators with nearest-neighbor interaction. It is well known 
(Goldstein, 1951) that low-frequency excitations of that lattice propagate 
like waves with uniform velocity. Therefore, in the limit of long wavelengths 
(many lattice parameters) the collective modes should display a kind of 
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Lorentz invariance, c being the speed of sound. The calculations are (almost) 
straightforward. With suitable units, the Hamiltonian is 

H =  �89 p~ +( qk+L -- qk) 2] (2) 

and it is natural to define the "Hamiltonian density" as 

Ilk = �89 + �89 I-- qk) 2 + �89 -- qk-, )2] (3) 

We obtain 

[Hk,H,,,]/ih=Pk(Sk.,,,_,--Sk.,)+ e,,,(Sk,,,--Sk..,+,) (4) 

where 

I Pk =~(qk+,-- qk)(Pk+, + Pk) (5) 

is the "momentum density". [A more suggestive notation might be to call 
this Pk+t/2 and to express the rhs of (4) in terms of Pk~_~/Z.] We can now 
define the total field momentum as 

and easily check that 

P = X Pk (6) 

[ H , P ] = 0  (7) 

Likewise, it readily follows from equations (4) and (5) that the "boost"  
operator 

satisfies 

K = x (8) 

[H, K]/ ih  = P (9) 

However, we also get, after a lengthy calculation 

[P,K]/ ih=�89 ] (10) 

rather than 

[P ,  K]/ ih  = H (11) 
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as required for the Loren tz  group.  Of  course,  we should  not  be surpr ised  
that  someth ing  went  " w r o n g "  because  the la t t ice  is not Lorentz  invariant .  
The  presen t  ca lcula t ion  shows expl ic i t ly  how Lorentz  invar iance  is a t ta ined  
in the l imit  of  long wavelengths,  when ar i thmet ic  and  geometr ic  means  are 
a lmost  equal :  

( q k + , - - q k ) ( q k - - q k _ , ) ' = � 8 9  2] (12) 

and 

E PkPk+,---- �89 Pk(Pk+,  + P k - , )  = E p~ (13) 

In conclusion,  it  should  be  no ted  that  the D i r a c - S c h w i n g e r  relat ions,  
which guarantee  that  the fields t r ans fo rm locally under  the Poincar6 group,  
are a s t ronger  requ i rement  that  the global equat ions  (7), (9), and  (1 1). 
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